
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Local Search
COURSE: CS60045

1

Pallab Dasgupta
Professor,
Dept. of Computer Sc & Engg

Lecture Objectives

• Learning the concept of problem solving using local improvements

• Learning the concept of getting stuck in local optima

• Learning the ways to get out of local optima

• Local search algorithms

REFERENCE

Artificial Intelligence – A Modern Approach, Stuart J Russell and Peter Norvig , Pearson Education India

2

Local search algorithms

• In many optimization problems, the path to the goal is irrelevant; the goal state itself is the solution
• Local search: widely used for very big problems
• Returns good but not optimal solutions in general

• The state space consists of "complete" configurations
• For example, every permutation of the set of cities is a configuration for the traveling salesperson

problem
• The goal is to find a “close to optimal” configuration satisfying constraints

• Examples: n-Queens, VLSI layout, exam time table

• Local search algorithms
• Keep a single "current" state, or small set of states
• Iteratively try to improve it / them
• Very memory efficient since only a few states are stored 3

Example: 4-queens
Goal: Put 4 queens on an 4 × 4 board with no two queens on the same row, column, or diagonal
State space: All configurations with the queens in distinct columns
State transition: Move a queen from its present place to some other square in the same column
Local Search: Start with a configuration and repeatedly use the moves to reach the goal

4

Move queen in Column 4

Move queen in Column 2

The last configuration has fewer conflicts than the first, but is still not a solution

Hill-climbing: A greedy approach

THE IDEA: Make a move only if the neighboring configuration is better than the present one

5

Source: Artificial Intelligence – A Modern Approach, Peter Norvig and Stuart Russell, Prentice Hall

The dual of Hill Climbing is Gradient Descent. Hill climbing is for maximizing, Gradient Descent is for minimizing

Value[state] = The numbers pairs of queens that are attacking
each other, either directly or indirectly.

Value[state] = 17 for the state shown in the Fig.

• The number in each square is the value of state if we move
the queen in the same column to that square.

• Therefore the best greedy move is to move a queen to a
square labeled with 12.

• There are many such moves. We choose one of them
at random.

Gradient Descent in 8-queens

6

Gradient descent can get stuck in local minima

• Each neighbor of a minimum is inferior with respect to the minimum
• No move in a minimum takes us to a better state than the present state

7

Shoulder

Global minimum

Local minimum
Flat Local minimum

Starting state

Local minimum in 8-queens

• A local minimum with only one conflict
• All one-step neighbors have more than one conflict

8

How to get out of local minima?

Idea-1: Gradient Descent with Random Restart
Using many random restarts improves our chances

Restart a random initial state, many times

• Report the best result found across many trials

9

Shoulder

Global minimum

Local minimum
Flat Local minimum

Starting state - 1

Starting state - 2

Starting state - 3

Idea-2: Allow moves to inferior neighbors

To get out of a local minimum, we must allow moves to inferior neighbors
However, we must ensure that we do not oscillate among a set of states

IDEAS
Simulated Annealing: Allow moves to inferior neighbors with a probability that is regulated over time.
We discuss this in more details later

Tabu Search: Add recently visited states to a tabu-list.
• These states are temporarily excluded from being visited again
• Forces solver away from explored regions
• Avoid getting stuck in local minima (in principle)

10

Simulated annealing search

11

IDEA: Escape local maxima by allowing some "bad" moves but gradually decrease their probability

• The probability is controlled by a parameter called temperature
• Higher temperatures allow more bad moves than lower temperatures
• Annealing: Lowering the temperature gradually Quenching: Lowering the temperature rapidly

function SIMULATED-ANNEALING(problem, schedule)
current  INITIAL-STATE[problem]
for t 1 to ∞ do

T schedule[t]
if T = 0 then return current
next a randomly selected successor of
current
∆E  VALUE[next] – VALUE[current]
if ∆E < 0 then current  next
else current  next with probability 𝒆𝒆 �−∆𝑬𝑬

𝑻𝑻

Shoulder

Global minimum

Local minimum
Flat Local minimum

Starting state

How simulated annealing works

12

Probability of making a bad move = 𝒆𝒆 �−∆𝑬𝑬
𝑻𝑻 = 𝟏𝟏

𝒆𝒆 �∆𝑬𝑬
𝑻𝑻

∆E1 ∆E2

A

B
C

Since ∆E1 > ∆E2 moving from A to C is exponentially more probable than moving from A to B

Properties of Simulated Annealing

• It can be proven that:
• If T decreases slowly enough, then simulated annealing search will find a global optimum with

probability approaching 1
• Since this can take a long time, we typically use a temperature schedule which fits our time

budget and settle for the sub-optimal solution

• Simulated annealing works very well in practice
• Widely used in VLSI layout, airline scheduling, etc.

13

Hill Climbing in Continuous Multi-variate State Spaces

Denote “state” as µ; cost as J(µ)

14

• Choose a direction in which J(µ) is decreasing

• Derivative: 𝝏𝝏𝝏𝝏(𝜽𝜽)
𝝏𝝏𝝏𝝏

• Positive derivative means increasing
• Negative derivative means decreasing

• Move: A short uphill step in the chosen direction

𝝏𝝏𝝏𝝏(𝜽𝜽)
𝝏𝝏𝝏𝝏

𝑱𝑱(𝜽𝜽)

Local Search with Multiple Present States
Instead of working on only one configuration at any time, we could work on multiple promising
configurations concurrently
LOCAL BEAM SEARCH
Maintain k states rather than just one. Begin with k randomly generated states
In each iteration, generate all the successors of all k states
Stop if a goal state is found; otherwise Select the k best successors from the complete list and repeat

GENETIC ALGORITHMS
States are strings over a finite alphabet (genes). Begin with k randomly generated states (population).
Select individuals for next generation based on a fitness function.
Two types of operators for creating the next states:

• Crossover: Fit parents to yield next generation (offspring)
• Mutation: Mutate a parent to create an offspring randomly with some low probability 15

Genetic Algorithm for 8 Queens

16

Fitness function: # non-attacking pairs
(min = 0, max = 8×7 / 2 = 28)

Population fitness = 24+23+20+11 = 78

P(Gene-1 is chosen)
= Fitness of Gene-1 / Population fitness
= 24 / 78 = 31%

P(Gene-2 is chosen)
= Fitness of Gene-2 / Population fitness
= 23 / 78 = 29%

Concluding Remarks

• Memory usage is one of the determining factors for choosing a search algorithm
• For large state spaces, local search is an attractive practical option

• For local search:
• It is important to understand the tradeoff between time and solution quality
• It is important to understand the shape of the state space to decide things like temperature schedule

in simulated annealing, durations of locking of moves in tabu search, and number of random restarts
in gradient descent

• Local search is not a push-button solution

17

Exercise Problem
Consider the problem of finding the shortest path between two points on a plane
that has convex polygonal obstacles. This is an idealization of the problem a
robot has to solve to navigate its way around in a crowded environment. In the
figure, the origin O is at coordinates (0, 0). The start state is at (1, 5). The goal is at
(10, 5). The robot cannot see those regions which are occluded by the obstacles.

Suppose the state space consists of all positions (x, y) in the plane. How many
states exist? How many paths are there to the goal?

We are interested in the shortest path to the goal. This runs along the corners of
the polygons and therefore consists of line segments that connect the polygon’s
corners. We formulate the state space to contain the corners of all polygons as
well as the start and goal coordinates. State the full successor function for the
states (1, 5) (start) and (3, 4) in the problem shown in the figure.

18

We will now use hill-climbing in the same setting, that is, planar robot navigation among polygonal obstacles. We
assume that the obstacles do not touch each other.
• Explain how hill-climbing would work as a method of reaching a particular end point. Is it guaranteed to find the

path?
• Show how nonconvex obstacles can result in a local maximum for the hill-climber, using an example

	Local Search
	Lecture Objectives
	Local search algorithms
	Example: 4-queens
	Hill-climbing: A greedy approach
	Gradient Descent in 8-queens
	Gradient descent can get stuck in local minima
	Local minimum in 8-queens
	Idea-1: Gradient Descent with Random Restart
	Idea-2: Allow moves to inferior neighbors
	Simulated annealing search
	How simulated annealing works
	Properties of Simulated Annealing
	Hill Climbing in Continuous Multi-variate State Spaces
	Local Search with Multiple Present States
	Genetic Algorithm for 8 Queens
	Concluding Remarks
	Exercise Problem

